[]1:

[]:

Assignment 4 - Systemes linéaires
May 5, 2025

1 Assignment 4: Méthodes itératives pour systemes linéaires

Avant de voir le code disponible de ce test et avant de commencer a rédiger vos
réponses, prenez le temps de réfléchir a4 la maniére dont vous pouvez organiser le
travail.

o Pensez a quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.

o Réfléchissez a la structure de votre code (vous pouvez faire un brouillon sur
papier).

o Reéfléchissez aux sections du cours qui vous seront utiles pour I’analyse de vos
résultats.

On considere les systemes linéaires paramétrisés de dimension n de la forme Agx = by, ott

f()g(0) f(B)g(0) f(5%)g(0) 0 0
f(B)g(1) f(L)g(1) f(B)g(1) f(8%)g(1) 0 0
Ag=| f(B*9(2) [f(Bg(2) [f(1)g(2) f(B)g(2) F(6%)9(2) 0 € R,
0 0 F(Pen—1) fBgn—1) fL)gn—1)

b; € R" tel que bg=Agz1 (c-a-d x =1 est la solution exacte).

On choisi f(x) =1 — cos (%), g(x) = %cosh (%) et B €[0,1].

Pour une taille n et une valeur beta de données, on peut calculer A et b en utilisant la fonction
matrix(n, beta) définie plus loin.

importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

def matrix(n, beta)
Returns A_\beta and b given in the exercice.

f = lambda x: 1.0 - np.cos(np.pi/2*x)
g = lambda x: np.cosh(np.pi * x / n) / n
vec = np.array([g(k) for k in range(n)])

diagonals of the matriz

[£f(1)*vec,

f(betax*1)*vec[:-1],

f (beta**2)*vec[:-2]]

A = np.diag(d[0],k=0) + \
np.diag(d[1],k=1) + np.diag(d[1],k=-1) + \
np.diag(d[2],k=2) + np.diag(d[2],k=-2)

Q.
]

b

A.dot(np.ones(n))

return A,b

1.1 Partie 1

Ecrire une fonction Richardson, qui implemente la méthode de Richardson stationnaire précondi-
tionné. La fonction doit avoir la structure suivante:

def Richardson(A, b, x0, P, alpha, max_iter, tol)
Stationary Richardson method to approxzimate the solution of Az=b

#

INPUTS:

A : system matriz

#0b : system wvector

z0 : initial guess

P : preconditioner

alpha : constant relazation parameter

maz_iter : mazimum number of iterations

tol : tolerance on the relative residual

#

OUTPUTS

zk : approzimate solution to the linear system
rk : list of relative norms of the restduals

[1: def Richardson(A, b, x0, P, alpha, max_iter, tol)

Stationary Richardson method to approximate the solution of Az=b
#

INPUTS:

A : system matriz

#Db : system wvector

x0 : initial guess

P : preconditioner

alpha : constant relazation parameter

maz_tter : mazimum number of iterations

tol : tolerance on the relative residual

#

OUTPUTS

zk : approzimate solution to the linear system

[]1:

res_morm : list of relative norms of the restiduals

xk = np.copy(x0)

rk ## COMPLETE HERE !! (residual)
res_norm = [np.linalg.norm(rk)]

rel_res = res_norm[-1] / np.linalg.norm(b)

k=0
while k < max_iter and rel_res > tol:

COMPLETE HERE !! (few lines of code)

res_norm.append(np.linalg.norm(rk))
rel_res = res_norm[-1] / np.linalg.norm(b)

k += 1

if k >= max_iter and rel_res >= tol:
print (f'Precondioned Gradient did not converge in {max_iter} iterations;

f'the relative residual is {rel_res:.3el}')
else:
print (f'Precondioned Gradient method converged in {k+1} iterations '
f'with a relative residual of {rel_res:.3e}')

return ## COMPLETE HERE !!

1.2 Partie 2

On sait que si la matrice A est diagonale dominante stricte par ligne, alors la méthode de Gauss-
Seidel converge. Etablir si c’est le cas lorsqu’on fixe 8 = 0.4, pour une taille n=20.

Dans le cas affirmatif, calculer la solution du systeme par la commande Richardson en choisissant

les méthodes de Jacobi et Gauss-Seidel. On fixe une tolérance tol = 1070 et le point de départ
(s

x?) =0.

Est-ce que les résultats obtenus sont en accord avec la théorie 7 (Commentaire 1)

Aide: la somme des valeurs (en valeur absolue) dans toutes les lignes d’une matrice M peut etre cal-
culée de la maniére suivante: v = np.sum(np.abs (M), azis=1). L’output v est un numpy.array,
dont longeur est égale au nombre des lignes de la matrice M.

n = 20
beta = 0.4
[A, b] = matrix(n, beta)

COMPLETE HERE !! (check if A is diagonally dominant --> see AIDE in text)

[]1:

[1:

[1:

x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print('\nJacobi preconditioner')

P = # COMPLETE HERE !! (Jacobi preconditioner)

X, _ = # COMPLETE HERE !! (call Richardson method)

err = # COMPLETE HERE !! (compute morm of error with exact solution)
print(f'The error is: {err:.3el}')

print ('\nGauss-Seidel preconditioner')

P = # COMPLETE HERE !! (Gauss-Seidel preconditioner)

X, _ = # COMPLETE HERE !! (call Richardson method)

err = # COMPLETE HERE !! (compute morm of error with ezact solution)
print(f'The error is: {err:.3el}')

Commentaire 1

1.3 Partie 3

Tracer le graphe du rayon spectral p(8) = max [Ag(g| (utiliser la commande np.linalg.eig pour
les valeures propes) des matrices d’itération de Jacobi B () et de Gauss-Seidel B ¢(/3) en fonction
de B, pour §=0,0.1,0.2,---, 1.

D’apres ce graphe, que peut-on dire sur la convergence des deux méthodes en fonction du parameétre
57 Quelle méthode utiliseriez-vous pour résoudre le systéeme dans le cas 8 = 0.7 7 Pourquoi 7 Est-ce
qu’on s’attend au méme nombre d’itérations que dans le cas 5 = 0.4 ? (Commentaire 2)

n = 20
betas = np.linspace(0,1,11)

rho_j, rho_gs = [1, []
for beta in betas
[A, b] = matrix(n,beta)

Jacobt

Pj = # COMPLETE HERE !! (Jacobi preconditioner)

Bj = # COMPLETE HERE !! (Jacobti iteration matriz)

rho_j.append(# COMPLETE HERE !! (mazimal singular value in modulus))

Gauss-Siedel

Pgs = # COMPLETE HERE !! (Gauss-Seidel preconditioner)

Bgs = # COMPLETE HERE !! (Gauss-Setidel tteration matriz)
rho_gs.append(# COMPLETE HERE !! (mazimal singular value in modulus))

plt.figure()

plt.plot(betas, rho_j, 'b:o', label='Jacobi')

[]1:

[]1:

plt.plot(betas, rho_gs, 'g:o', label='Gauss-Seidel')
plt.plot(np.linspace(0,1,50), np.ones(50), 'r-');

plt.xlabel(r'β', fontsize=15)
plt.ylabel(r'$\rho(B)$', fontsize=15)
plt.x1im([0,1])
plt.legend(fontsize=15)
plt.grid(linestyle='--"', linewidth=.5)
plt.show()

Commentaire 2

1.4 Partie 4

Maintenant, on consideére la matrice Ag et le vecteur bg que I'on obtient pour n=100. Dans ce cas,
pour B = 0.25 et 3 = 0.50, tracer et comparer les graphes semilogy de la norme du résidu r'® en
fonction du nombre d’itérations pour la méthode de Jacobi.

Donner un commentaire, en considerant les pentes des courbes obtenues. Est-ce qu’on s’attend de
résultats similaires pour la méthode de Gauss-Seidel ? (Commentaire 3)

n = 100
x0 = np.zeros(n)
tol = 1e-10

nmax = 500

beta = 0.25

[A, b] = matrix(n,beta)

P = # COMPLETE HERE !! (Jacobt preconditioner)

_, res_beta2b = # COMPLETE HERE !! (call Richardson method)

beta = 0.5

[A, b] = matrix(n,beta)

P = # COMPLETE HERE !! (Jacobi preconditioner)

_, res_betab0 = # COMPLETE HERE !! (call Richardson method)

plt.figure()

0.25%")
0.50$")

plt.semilogy(res_beta25, 'b:o', label=r'$\beta
plt.semilogy(res_betab0, 'g:o', label=r'$\beta

plt.legend(fontsize=15)

plt.xlabel(r'k', fontsize=15)
plt.ylabel('Absolute Residual', fontsize=15);
plt.grid(linestyle='--"', linewidth=.5)
plt.show()

[1:

[]:

Commentaire 3

1.5 Partie 5

D’aprés la théorie vue en classe, est-il possible d’ameliorer la convergence de la méthode de Richard-
son stationnaire avec le préconditionneur de Jacobi ? Si oui, comment ?

Verifiez votre hypothése numeriquement, en choisissant n=100 et 5 = 0.5. Donner un commentaire
sur les résultats obtenus. (Commentaire 4)

beta = 0.5
[A, bl = matrix(n,beta)

P = # COMPLETE HERE !! (Jacobi preconditioner)

COMPLETE HERE !! (your tdea to speed up convergence, few lines of code)

Commentaire 4

1.6 Partie 6

La convergence peut étre encore ameliorée si on considére des méthodes de Richardson non-
stationnaires, dans lesquels la valeur du parameétre a change au cours des itérations. L’example le
plus simple est donné par la méthode du Gradient Preconditionee.

Ecrire une nouvelle fonction PrecGradient, en modifiant de maniére appropriée la fonction
Richardson créée dans la Partie 1. Vérifier la convergence de la méthode en prenant n=100 et
B = 0.5, et en considerant: * le cas pas preconditionné (c-a-d P = np.eye(n)); * le précondition-
neur de Jacobi.

Donner un commentaire sur la base des résultats obtenus. (Commentaire 5)

def PrecGradient(A, b, x0, P, max_iter, tol)
Preconditioned gradient method to approxzimate the solution of Ax=b

#

INPUTS:

A : system matriz

#D : system wvector

z0 : initial guess

P : preconditioner

maz_tter : mazimum number of iterations

tol : tolerance on the relative residual

#

OUTPUTS

zk : approzimate solution to the linear system
res_morm : list of relative norms of the restiduals

COMPLETE HERE !! (copy-paste the Richardson function and change it where,
oneeded --> it is a one-line update!)

if k >= max_iter and rel_res >= tol:
print(f'Precondioned Gradient did not converge in {max_iter} iterations;

f'the relative residual is {rel_res:.3el}')
else:
print(f'Precondioned Gradient method converged in {k+1} iterations '
f'with a relative residual of {rel res:.3e}')

return xk, res_norm
[1: n= 100
beta = 0.5
[A, b] = matrix(n, beta)
x0 = np.zeros(n)
tol = 1e-10

nmax = 500

print("Without preconditioning")

P = np.eye(n)
_ = # COMPLETE HERE !! (call Gradient method)
print("\n")

print("Using Jacobi preconditioner")
P = # COMPLETE HERE !! (Jacobi preconditioner)
_ = # COMPLETE HERE !! (call Gradient method)

Commentaire 5

2 Quelques petites questions finales (pas évaluées)

o What types of collaboration strategies did your group use?

— Work in pairs on different sections.

— Work individually on different sections.

— Work together on the same section with one notebook opened.

— Work together on the same section with multiple notebooks opened.
— Other (please specity).

o How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

o How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

Please report your answers here. Thank you!

	Assignment 4: Méthodes itératives pour systèmes linéaires
	Partie 1
	Partie 2
	Partie 3
	Partie 4
	Partie 5
	Partie 6

	Quelques petites questions finales (pas évaluées)

