
Assignment 4 - Systemes linéaires

May 5, 2025

1 Assignment 4: Méthodes itératives pour systèmes linéaires
Avant de voir le code disponible de ce test et avant de commencer à rédiger vos
réponses, prenez le temps de réfléchir à la manière dont vous pouvez organiser le
travail.

• Pensez à quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.

• Réfléchissez à la structure de votre code (vous pouvez faire un brouillon sur
papier).

• Réfléchissez aux sections du cours qui vous seront utiles pour l’analyse de vos
résultats.

On considère les systèmes linéaires paramétrisés de dimension 𝑛 de la forme 𝐴𝛽x = b𝛽, où

𝐴𝛽 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓(1)𝑔(0) 𝑓(𝛽)𝑔(0) 𝑓(𝛽2)𝑔(0) 0 ⋯ 0
𝑓(𝛽)𝑔(1) 𝑓(1)𝑔(1) 𝑓(𝛽)𝑔(1) 𝑓(𝛽2)𝑔(1) 0 0
𝑓(𝛽2)𝑔(2) 𝑓(𝛽)𝑔(2) 𝑓(1)𝑔(2) 𝑓(𝛽)𝑔(2) 𝑓(𝛽2)𝑔(2) 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 ⋯ 0 𝑓(𝛽2)𝑔(𝑛 − 1) 𝑓(𝛽)𝑔(𝑛 − 1) 𝑓(1)𝑔(𝑛 − 1)

⎞⎟⎟⎟⎟⎟⎟
⎠

∈ ℝ𝑛×𝑛;

b𝛽 ∈ ℝ𝑛 tel que b𝛽 = A𝛽 1 (c-à-d x = 1 est la solution exacte).

On choisi 𝑓(𝑥) = 1 − cos(𝜋𝑥
2), 𝑔(𝑥) = 1

𝑛 cosh(𝜋𝑥
𝑛) et 𝛽 ∈ [0, 1].

Pour une taille n et une valeur beta de 𝛽 données, on peut calculer 𝐴 et 𝑏 en utilisant la fonction
matrix(n, beta) définie plus loin.

[]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[]: def matrix(n, beta) :
Returns A_\beta and b given in the exercice.

f = lambda x: 1.0 - np.cos(np.pi/2*x)
g = lambda x: np.cosh(np.pi * x / n) / n
vec = np.array([g(k) for k in range(n)])

1

diagonals of the matrix
d = [f(1)*vec,

f(beta**1)*vec[:-1],
f(beta**2)*vec[:-2]]

A = np.diag(d[0],k=0) + \
np.diag(d[1],k=1) + np.diag(d[1],k=-1) + \
np.diag(d[2],k=2) + np.diag(d[2],k=-2)

b = A.dot(np.ones(n))

return A,b

1.1 Partie 1
Ècrire une fonction Richardson, qui implemente la méthode de Richardson stationnaire précondi-
tionné. La fonction doit avoir la structure suivante:

def Richardson(A, b, x0, P, alpha, max_iter, tol) :
Stationary Richardson method to approximate the solution of Ax=b
#
INPUTS:
A : system matrix
b : system vector
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
max_iter : maximum number of iterations
tol : tolerance on the relative residual
#
OUTPUTS
xk : approximate solution to the linear system
rk : list of relative norms of the residuals

[]: def Richardson(A, b, x0, P, alpha, max_iter, tol) :
Stationary Richardson method to approximate the solution of Ax=b
#
INPUTS:
A : system matrix
b : system vector
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
max_iter : maximum number of iterations
tol : tolerance on the relative residual
#
OUTPUTS
xk : approximate solution to the linear system

2

res_norm : list of relative norms of the residuals

xk = np.copy(x0)
rk = ## COMPLETE HERE !! (residual)
res_norm = [np.linalg.norm(rk)]
rel_res = res_norm[-1] / np.linalg.norm(b)

k = 0
while k < max_iter and rel_res > tol:

COMPLETE HERE !! (few lines of code)

res_norm.append(np.linalg.norm(rk))
rel_res = res_norm[-1] / np.linalg.norm(b)

k += 1

if k >= max_iter and rel_res >= tol:
print(f'Precondioned Gradient did not converge in {max_iter} iterations;

↪ '
f'the relative residual is {rel_res:.3e}')

else:
print(f'Precondioned Gradient method converged in {k+1} iterations '

f'with a relative residual of {rel_res:.3e}')

return ## COMPLETE HERE !!

1.2 Partie 2
On sait que si la matrice 𝐴𝛽 est diagonale dominante stricte par ligne, alors la méthode de Gauss-
Seidel converge. Ètablir si c’est le cas lorsqu’on fixe 𝛽 = 0.4, pour une taille n=20.

Dans le cas affirmatif, calculer la solution du système par la commande Richardson en choisissant
les méthodes de Jacobi et Gauss-Seidel. On fixe une tolérance tol = 10−10 et le point de départ
x(0) = 0.

Est-ce que les résultats obtenus sont en accord avec la théorie ? (Commentaire 1)

Aide: la somme des valeurs (en valeur absolue) dans toutes les lignes d’une matrice M peut etre cal-
culée de la manière suivante: v = np.sum(np.abs(M), axis=1). L’output v est un numpy.array,
dont longeur est égale au nombre des lignes de la matrice M.

[]: n = 20
beta = 0.4
[A, b] = matrix(n, beta)

COMPLETE HERE !! (check if A is diagonally dominant --> see AIDE in text)

3

[]: x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print('\nJacobi preconditioner')
P = # COMPLETE HERE !! (Jacobi preconditioner)
x, _ = # COMPLETE HERE !! (call Richardson method)
err = # COMPLETE HERE !! (compute norm of error with exact solution)
print(f'The error is: {err:.3e}')

print('\nGauss-Seidel preconditioner')
P = # COMPLETE HERE !! (Gauss-Seidel preconditioner)
x, _ = # COMPLETE HERE !! (call Richardson method)
err = # COMPLETE HERE !! (compute norm of error with exact solution)
print(f'The error is: {err:.3e}')

Commentaire 1

1.3 Partie 3
Tracer le graphe du rayon spectral 𝜌(𝛽) = max |𝜆𝐵(𝛽)| (utiliser la commande np.linalg.eig pour
les valeures propes) des matrices d’itération de Jacobi 𝐵𝐽(𝛽) et de Gauss-Seidel 𝐵𝐺𝑆(𝛽) en fonction
de 𝛽, pour 𝛽 = 0, 0.1, 0.2, ⋯ , 1.
D’après ce graphe, que peut-on dire sur la convergence des deux méthodes en fonction du paramètre
𝛽? Quelle méthode utiliseriez-vous pour résoudre le système dans le cas 𝛽 = 0.7 ? Pourquoi ? Est-ce
qu’on s’attend au même nombre d’itérations que dans le cas 𝛽 = 0.4 ? (Commentaire 2)

[]: n = 20
betas = np.linspace(0,1,11)

rho_j, rho_gs = [], []
for beta in betas :

[A, b] = matrix(n,beta)

Jacobi
Pj = # COMPLETE HERE !! (Jacobi preconditioner)
Bj = # COMPLETE HERE !! (Jacobi iteration matrix)
rho_j.append(# COMPLETE HERE !! (maximal singular value in modulus))

Gauss-Siedel
Pgs = # COMPLETE HERE !! (Gauss-Seidel preconditioner)
Bgs = # COMPLETE HERE !! (Gauss-Seidel iteration matrix)
rho_gs.append(# COMPLETE HERE !! (maximal singular value in modulus))

[]: plt.figure()

plt.plot(betas, rho_j, 'b:o', label='Jacobi')

4

plt.plot(betas, rho_gs, 'g:o', label='Gauss-Seidel')

plt.plot(np.linspace(0,1,50), np.ones(50), 'r-');

plt.xlabel(r'β', fontsize=15)
plt.ylabel(r'$\rho(B)$', fontsize=15)
plt.xlim([0,1])
plt.legend(fontsize=15)
plt.grid(linestyle='--', linewidth=.5)
plt.show()

Commentaire 2

1.4 Partie 4
Maintenant, on considère la matrice 𝐴𝛽 et le vecteur b𝛽 que l’on obtient pour n=100. Dans ce cas,
pour 𝛽 = 0.25 et 𝛽 = 0.50, tracer et comparer les graphes semilogy de la norme du résidu r(𝑘) en
fonction du nombre d’itérations pour la méthode de Jacobi.

Donner un commentaire, en considerant les pentes des courbes obtenues. Est-ce qu’on s’attend de
résultats similaires pour la méthode de Gauss-Seidel ? (Commentaire 3)

[]: n = 100
x0 = np.zeros(n)
tol = 1e-10
nmax = 500

beta = 0.25
[A, b] = matrix(n,beta)
P = # COMPLETE HERE !! (Jacobi preconditioner)
_, res_beta25 = # COMPLETE HERE !! (call Richardson method)

beta = 0.5
[A, b] = matrix(n,beta)
P = # COMPLETE HERE !! (Jacobi preconditioner)
_, res_beta50 = # COMPLETE HERE !! (call Richardson method)

[]: plt.figure()

plt.semilogy(res_beta25, 'b:o', label=r'$\beta = 0.25$')
plt.semilogy(res_beta50, 'g:o', label=r'$\beta = 0.50$')

plt.legend(fontsize=15)
plt.xlabel(r'k', fontsize=15)
plt.ylabel('Absolute Residual', fontsize=15);
plt.grid(linestyle='--', linewidth=.5)
plt.show()

5

Commentaire 3

1.5 Partie 5
D’aprés la théorie vue en classe, est-il possible d’ameliorer la convergence de la méthode de Richard-
son stationnaire avec le préconditionneur de Jacobi ? Si oui, comment ?

Verifiez votre hypothése numeriquement, en choisissant n=100 et 𝛽 = 0.5. Donner un commentaire
sur les résultats obtenus. (Commentaire 4)

[]: beta = 0.5
[A, b] = matrix(n,beta)

P = # COMPLETE HERE !! (Jacobi preconditioner)

COMPLETE HERE !! (your idea to speed up convergence, few lines of code)

Commentaire 4

1.6 Partie 6
La convergence peut être encore ameliorée si on considère des méthodes de Richardson non-
stationnaires, dans lesquels la valeur du paramètre 𝛼 change au cours des itérations. L’example le
plus simple est donné par la méthode du Gradient Preconditionee.

Écrire une nouvelle fonction PrecGradient, en modifiant de manière appropriée la fonction
Richardson créée dans la Partie 1. Vérifier la convergence de la méthode en prenant n=100 et
𝛽 = 0.5, et en considerant: * le cas pas preconditionné (c-à-d P = np.eye(n)); * le précondition-
neur de Jacobi.

Donner un commentaire sur la base des résultats obtenus. (Commentaire 5)

[]: def PrecGradient(A, b, x0, P, max_iter, tol) :
Preconditioned gradient method to approximate the solution of Ax=b
#
INPUTS:
A : system matrix
b : system vector
x0 : initial guess
P : preconditioner
max_iter : maximum number of iterations
tol : tolerance on the relative residual
#
OUTPUTS
xk : approximate solution to the linear system
res_norm : list of relative norms of the residuals

COMPLETE HERE !! (copy-paste the Richardson function and change it where␣
↪needed --> it is a one-line update!)

6

if k >= max_iter and rel_res >= tol:
print(f'Precondioned Gradient did not converge in {max_iter} iterations;

↪ '
f'the relative residual is {rel_res:.3e}')

else:
print(f'Precondioned Gradient method converged in {k+1} iterations '

f'with a relative residual of {rel_res:.3e}')

return xk, res_norm

[]: n = 100
beta = 0.5
[A, b] = matrix(n, beta)

x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print("Without preconditioning")
P = np.eye(n)
_ = # COMPLETE HERE !! (call Gradient method)
print("\n")

print("Using Jacobi preconditioner")
P = # COMPLETE HERE !! (Jacobi preconditioner)
_ = # COMPLETE HERE !! (call Gradient method)

Commentaire 5

2 Quelques petites questions finales (pas évaluées)
• What types of collaboration strategies did your group use?

– Work in pairs on different sections.
– Work individually on different sections.
– Work together on the same section with one notebook opened.
– Work together on the same section with multiple notebooks opened.
– Other (please specify).

• How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

• How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

Please report your answers here. Thank you!

7

	Assignment 4: Méthodes itératives pour systèmes linéaires
	Partie 1
	Partie 2
	Partie 3
	Partie 4
	Partie 5
	Partie 6

	Quelques petites questions finales (pas évaluées)

